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A Critical Review of Computational Protein Design Strategies:  

Progress, Limitations, and Improvements 
 
INTRODUCTION 
 

The  question  of  how  a  protein’s  3D  structure  is  encoded  by  its  amino  acid  sequence,  and  how  

that structure in turn dictates its biological function, has been a long-standing mystery. With the 

advent of faster, more accurate algorithms for predicting protein structure based on primary 

sequence, growing interest and effort has been devoted to exploring the inverse problem, that of 

designing novel protein sequences to take on specified structures. Part of the interest is purely 

intellectual – computational protein design is the ultimate test of our understanding of processes 

such as protein folding and catalysis. By granting us control over all variables, protein design 

allows us to systematically probe the biochemical principles that underlie the complex and 

elegant molecular designs found in nature. At the same time, from a practical standpoint, protein 

design offers the tantalizing opportunity to unlock the potentially unlimited structural and 

functional space not sampled by nature. Proteins, both natural and evolved, have demonstrated 

tremendous versatility, specificity, and robustness in binding and catalysis that are often 

unparalleled by small molecules or synthetic processes. Thus, the ability to design novel protein 

systems and machines from first principles would pave the way for unprecedented advances in 

medicine, energy, bioremediation, and many other areas. 

 

Similar to computational protein structure prediction, there are two general approaches to protein 

design.  The  first  is  “template-based,”  where  an  existing  protein  with  a  known  sequence  is  

redesigned to confer additional stability, specificity, functionality, etc. Unsurprisingly, this 

approach has been comparatively more successful, as by definition we have more information on 

which to base the new design. Because the new protein is still functionally relatively similar to 

the original protein, the new sequence and structure often retain some memory of their 

predecessors. The second approach is de novo design, in which a completely novel protein is 

generated with no prior knowledge other than the desired shape or function, and fundamental 

physicochemical principles governing interactions between amino acids and their surrounding 

environment. This is particularly challenging in the case of computational enzyme design for 
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reactions not catalyzed in nature, where even the desired global fold is unknown, and must be 

extrapolated based on the kinetics of the desired chemical reaction. This paper will review both 

template-based and de novo approaches, discuss progress that has been achieved and limitations 

that still exist, and outline potential improvements to overcome these limitations. 

 

ELEMENTS OF PROTEIN DESIGN METHODOLOGIES 

 

Over the last several decades, computational protein designers have succeeded in redesigning 

existing proteins or constructing novel proteins to perform a diverse range of functions. 

However, regardless of whether the design aim involves engineering an active site, a protein-

protein interface, or a completely new protein fold, these approaches all rely on the same broad 

methodology. Thus, rather than describe a number of similar design algorithms, this section will 

outline the underlying basic methodology common to all of them, highlighting critical steps and 

where aim-specific variation and tailoring can be incorporated.  

 

Figure 1 depicts the various stages of designing a protein sequence to adopt a specified topology. 

The first step is to delineate the target structure for the design, a set of coordinates for the 

backbone atoms. Once the target conformation has been defined, a library of candidate amino 

acid sequences is generated and passed through a computational sieve, an energy function used 

to measure sequence-structure compatibility, to filter out high-energy sequences unlikely to 

adopt the desired topology. Because the number of potential sequences for even a protein of 

moderate size can rapidly become computationally unfeasible, a variety of sampling strategies 

have been applied to increase the efficiency of searching such a large sequence space. Once the 

initial library of sequences has been narrowed down to a manageable number of candidates, 

more computationally laborious but rigorous techniques, such as molecular dynamics, can be 

used to individually evaluate and refine each design. Finally, depending on the results of 

computational design, complementary experimental approaches, such as directed evolution, are 

often used to further improve the stability or function of the designed protein. 
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Figure 1. Schematic of the steps in computational protein design. 

 

Defining a Target Structure 

The target structure that the designed protein sequence is intended to fold into depends, naturally, 

on the function the protein is meant to serve. For example, in the case of redesigning a natural 

protein to bind the same target with greater specificity or affinity, the target structure should be 

similar to the existing one, so the target backbone coordinates can simply be obtained from a 

high-resolution crystal or NMR structure of the wild-type protein [1]. In the case of de novo 

design, a 2D diagram can be used as a template to assemble a 3D model from modular secondary 

structure elements or short peptide fragments from PDB that fit the desired topology [2, 3].  
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This latter option is particularly challenging in the case of de novo enzyme design, due to the 

high level of atomic precision in positioning the reactive functional groups that is necessary for 

efficient catalysis. The collaborative efforts of the Baker and Houk groups have led to the 

development  of  an  “inside-out”  protocol  for  designing novel enzyme structures [4]. Once a target 

reaction has been chosen, a model of the catalytic mechanism is used to pinpoint the requisite set 

of functional groups and propose a transition state for the reaction. Based on this, quantum 

mechanical calculations are used to generate a theoretical active site, or a theozyme, in which 

amino acids with the key functional groups are built into the geometry predicted to best stabilize 

the transition state. Once these parameters have been fixed, an accommodating scaffold can be 

selected from databases of known structures, and residues surrounding the active site are 

optimized to provide a stable framework for these key groups [4]. It is important to note here that 

the success of the designed enzyme is thus not only impacted by the computational algorithms 

used, but is also intrinsically linked to the accuracy of the proposed catalytic mechanism for the 

reaction, which is determined by biochemical studies.  

 

Generating a Sequence Library 

Given that the success of the final protein sequence design is dependent on the quality of the 

sequence library, the method used to enumerate candidate sequences for screening is one of the 

most critical features of a design algorithm. In searching for sequences to adopt a target 

structure, protein designers must walk a fine line, maintaining computational tractability while 

also widening the sequence search space to allow reasonably small deviations from the target 

structure. The latter consideration is particularly important during early iterations of de novo 

design, because it is uncertain whether any arbitrarily defined novel backbone is necessarily 

designable. 

  

That said, in principle, the number of potential sequences for a protein comprised of n residues is 

20n. While protein redesign often relies on introducing mutations into a mostly fixed native 

sequence, in de novo design, it may be necessary to apply certain simplifications to constrain 

what is likely a vast search space. For example, the amino acid composition of secondary 

structural  motifs  have  been  extensively  studied,  beginning  from  Chou  and  Fasman’s  early  

calculations for the propensities of the different amino acids to occur in structural elements such 
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as  α-helices  and  β-sheets [5-7]. These empirically determined parameters can be used to make 

educated guesses about which residues will be tolerated at certain positions in the protein, 

allowing some reduction in the sequence search space. Related to this, early success in de novo 

design was achieved using hydrophobic patterning, which is based on the premise that strategic 

arrangement of polar and nonpolar residues can direct folding into amphipathic secondary 

structures. By classifying amino acids as polar or nonpolar, hydrophobic patterning can 

dramatically reduce the combinatorial diversity that must be explored [8].   

 

Besides these coarse-grained or qualitative methods for enumerating candidate sequences, more 

systematic search algorithms can be used to scan the sequence space. There are 2 broad 

categories of search algorithms: (1) stochastic, or probabilistic, and (2) deterministic. While the 

former relies on random sampling, and thus is faster, the latter is more time-consuming, but is 

exhaustive and thus guaranteed to find a global energy minimum.  

 

A widely used stochastic sampling method, which is employed by RosettaDesign, is Monte 

Carlo optimization, or simulated annealing [3, 9]. In this method, a random starting design is 

generated and its energy calculated. Each subsequent step in the optimization involves 

introducing a single amino acid substitution to the starting sequence, and recalculating the 

energy.  A  given  substitution  is  accepted  automatically  if  it  decreases  the  sequence’s  energy,  but  

if it increases the energy, it is accepted or rejected in what is known as the Metropolis step, based 

on a probabilistic threshold that is a function of the Boltzmann distribution and the simulation 

temperature. Because the Monte Carlo method relies on stochastic sampling, it is not guaranteed 

to find the global energy minimum, and despite the Metropolis criterion, can still get trapped in 

local energy minima. To get around this, multiple runs of Monte Carlo optimization are 

performed with different random starting sequences in order to cover, as best as possible, a 

rugged energy landscape. Generally, the runs will converge to sequences of 70-80% identity, 

suggesting that the search is not getting trapped in a local energy minimum [9].  

 

In contrast, ORBIT (optimization of rotamers by iterative technique), which was developed by 

the Mayo group, applies a deterministic search algorithm that is based on the dead-end 

elimination (DEE) theorem [10]. Rather than relying on random sampling, DEE cuts down on 
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the sequence space that must be explored by iteratively pruning out amino acids or rotamer states 

that cannot be present in the global minimum energy conformation (GMEC). Briefly, for each 

amino acid at a given position, two rotamers, or side chain conformations, are compared with 

respect to the sum of the side chain-backbone energy (for that particular amino acid) and the 

minimum side chain-side chain energy that can be achieved with all other possible combinations 

of rotamers (i.e., at other positions). The side chain-backbone energetic contributions of the other 

residues in the sequence are ignored, because they are independent of, and thus assumed constant 

between, the two rotamer states for the specified residue [10, 11]. DEE is functionally 

exhaustive, and so is guaranteed to converge to the GMEC. However, due to computational 

limitations, DEE has generally been restricted to designing relatively small proteins. More recent 

modifications, such as a generalized DEE algorithm proposed by Looger and Hellinga, where 

clusters of rotamers are compared rather than individual rotamers, show promise in expanding 

the application of DEE to larger proteins [12]. 

 

Energy functions for ranking candidate sequences 

Besides the search algorithm used to sample the sequence space, the other most important feature 

of a design methodology is the method used to evaluate and filter candidate sequences. Putative 

sequences are scored using an energy function to determine their compatibility with the target 

structure. The  most  successful  energy  functions  are  “hybrid”  functions  that  employ  both  

knowledge-based and physics-based potentials to calculate side chain-side chain and side chain-

backbone interaction energies, which are then summed to give the total energy of a particular 

protein sequence and conformation. Examples of hybrid energy functions include those used by 

ORBIT and RosettaDesign, two of the most successful and widely used design softwares [9, 10]. 

Knowledge-based terms are statistical parameters derived from databases of known protein 

structures (i.e., Protein Databank, or PDB), and thus exploit the design principles that nature has 

used to generate robust and versatile proteins. For example, due to the hydrophobic effect, 

residues in the core of a protein tend to be more hydrophobic, while solvent-exposed residues on 

the surface tend to be hydrophilic. Thus, a candidate design would be heavily penalized for 

having a solvent-exposed tryptophan [13]. Another example of knowledge-based implementation 

is the use of rotamer libraries to model the side chain conformations of amino acids. Based on 

solved protein structures, residue side chains are observed to prefer a limited set of 



Anne Ye 
BIOC 218 – Final Project 

conformations [14]. The backbone-dependent probabilities for each rotamer can be converted to 

pseudo-energies, to bias residues towards adopting lower-energy conformations in the design.   

 

The major physics-based energy function components include: (1) Lennard-Jones potential, (2) 
orientation-dependent hydrogen bond potential, (3) electrostatic interactions, and (4) an implicit 

solvation model [9, 15]. Van der Waals interactions, which are measured by Lennard-Jones 

potential, favor close packing of atoms that is constrained by sterics at short distances, and are 

thus necessary to model the packing of the protein core. Second, modeling of the costs of 

solvation/ desolvation is critical for recapitulating the hydrophobic effect. Because it is 

prohibitively expensive to explicitly model the interactions between amino acids and individual 

water molecules, the surrounding solvent is generally approximated as a continuous medium in 

an implicit solvation model, which is based on the accessible surface areas of atoms and 

empirically derived vapor-to-water free energies of transfer of amino acid side chains [15, 16]. 

Balancing out the implicit solvation model are the hydrogen bond potentials and electrostatic 

interaction energies, which lessen the penalty for buried hydrophilic residues if they are able to 

form stabilizing hydrogen bonds or salt bridges. Because naturally occurring protein sequences 

are generally expected to reside in local energy minima, energy functions can be optimized by 

parameterizing them to reflect this [17]. 

 

LANDMARKS AND PROGRESS IN COMPUTATIONAL PROTEIN DESIGN 
 

Although successful design of novel proteins was reported as early as the 1970s, early designs 

were based on a qualitative understanding of protein biochemistry, and mainly consisted of 

stitching together simple, modular secondary  structures  such  as  α-helices [18] and  β-sheets [19], 

or hydrophobic patterning [20]. In the 1990s, the advent of powerful computers, as well as the 

rapid expansion of structural databases from which improved force fields for modeling 

interaction energies could be derived, enabled the development of the first structure-based 

computational protein design softwares. In 1997, the Mayo group described the first fully 

automated algorithm for de novo protein design, and used it to design a sequence to fit the  ββα  

motif found in zinc finger domains [13]. In 2003, RosettaDesign was used to engineer Top7, a 

93-residue  α/β protein with a completely novel protein fold [3]. In both cases, the computational 
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designs were experimentally tested, and structural characterization showed that the synthesized 

protein sequences folded into compact, stable structures that were highly similar to the design 

model, thus validating the computational methodologies.  

 

Since these landmark proof-of-concept successes, the field of computational design has focused 

on redesign and de novo design of proteins to perform a diverse range of functions, including 

catalysis, binding of other proteins or small molecules, and assembly into multimeric structures. 

Examples of particular interest are noted here. In 2008, a pioneering success in de novo enzyme 

design was achieved when Rosetta was used to generate the first ever retro-aldolase [21], for 

which there is no natural counterpart. De novo enzymes to carry out Kemp elimination and 

Diels-Alder reactions followed in quick succession [4, 22]. Enzyme redesign also achieved 

notable successes, including the transplantation of new catalytic activity into a crotonase by 

replacing two key amino acids in the active site and mutationally stabilizing the surrounding 

scaffold [23]. Generalizing their inside-out approach for enzyme design to the design of protein 

binding affinity, the Baker group has more recently described the engineering of a protein 

against a conserved cluster of surface residues on the stem of H1N1 influenza hemagglutinin 

(HA), which plays a critical role in viral entry of host cells [24]. After affinity maturation, the 

designed antiviral protein bound (HA) with low nanomolar affinity, and was able to inhibit 

fusogenic conformational changes in the target, showing great promise for therapeutic 

application. An inverse problem to engineering binding affinity is engineering binding 

specificity, or the ability to bind tightly to one target, but not structurally similar targets. The 

Keating group has done extensive work in developing CLASSY, a computational framework for 

engineering binding specificity, by converting a structure-based interaction model into a 

sequence-based scoring function, thus enabling the incorporation of penalties against interactions 

between the designed protein and undesired targets during optimization of the design-target 

interaction [25]. As proof of concept, CLASSY was used to tailor the peptide-binding 

specificities of multiple members of the bZIP transcription factor family, and the authors 

estimated that it would be possible to engineer >1,900 unique interaction profiles. Finally, an 

example of designing proteins to self-assemble into a desired oligomeric structure was the Baker 

group’s construction of 12-mer and 24-mer nanocages by symmetrically docking naturally 
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trimeric protein subunits together to identify an optimal packing framework, then redesigning the 

interfaces between the subunits to minimize the energy of self-assembly [26].  

 

In addition to successes achieved in designing new proteins, recent years have also seen 

advances in protein design algorithms and softwares, although ORBIT and RosettaDesign remain 

widely used. One example is the Keating group’s CLASSY. The Donald group at Duke 

University has also developed OSPREY (open-source protein redesign for you), a new suite of 

protein design programs that incorporates the use of continuous rotamers, as well as explicitly 

incorporating continuous protein backbone flexibility [27, 28]. To compensate for the increase in 

computational cost that results from adding degrees of freedom to the protein model, OSPREY 

uses improved DEE algorithms to enhance the efficiency of searching the larger sequence space. 

 

CURRENT LIMITATIONS AND POTENTIAL IMPROVEMENTS 
 

Despite the great progress that has been made in computational protein design since its birth, 

there still remain a number of limitations in currently used algorithms that prevent wider use and 

greater success. This is most obviously reflected by the fact that, in many cases, experimental 

optimization subsequent to computational design still often leads to dramatic improvements in 

stability and function, and sometimes, directed evolution is necessary to improve designed 

proteins even to the point where they are comparable to natural proteins. For example, in the case 

of the de novo Kemp eliminase, while it was remarkable that the computationally designed 

enzyme was able to achieve unprecedented functionality, subsequent directed evolution in vitro 

further improved the catalytic efficiency of the designed enzyme by >200-fold by incorporating 

as few as 4 additional mutations [4]. In another example, retrospective examination of an 

inactive first-generation design using molecular dynamics (MD) and x-ray crystallography 

highlighted several problems with the design. Essentially, the computational design was not 

borne out in real life – the designed active site side chains were highly mobile and did not 

maintain the necessary catalytic geometry upon exposure to solvent. Furthermore, stable 

alternate conformations competed with the catalytically active one. Based on these findings, a 

second round of design was initiated that yielded multiple active mutants with catalytic 

efficiencies comparable to those generated via directed evolution [29].  
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The work that has been done to examine why unsuccessful designs are unsuccessful reveals 

weaknesses in the current force fields used to model designs, most clearly in the modeling of 

long-range electrostatic interactions and the use of crude implicit solvation models that are less 

accurate than explicit models for the interaction of designed proteins with surrounding solvent 

molecules. However, in order for these issues with the energy function to be properly resolved, 

significantly greater computational power is needed, and this is a limiting step in the refinement 

of design algorithms. At present, the most successful designs will likely be achieved by using 

computational design to generate a weakly functional protein that can then be subjected to time- 

and labor-intensive optimization methods, such as directed evolution and molecular dynamics.  

 

Rather than modularly applying computational and experimental approaches, however, it may be 

possible to integrate the two to greater effect. In 2006, Saraf et al. described the development of 

a new computational protein redesign algorithm called IPRO, which iteratively optimizes designs 

by identifying and propagating mutations that are found to improve computational design 

stability, affinity, etc. [30]. Essentially, IPRO serves as an in silico implementation of directed 

evolution. Since then, advances in DNA synthesis and next-generation sequencing techniques 

have made library construction and sequencing dramatically faster and cheaper, enabling deep 

sequencing of libraries after each round of evolution. This suggests the possibility of merging 

directed evolution and IPRO, as opposed to the current approaches that strictly alternate between 

rounds of in silico design and in vitro evolution [31]. After an initial design has been computed, 

a library of sequences can be generated in vitro from this template and subjected to directed 

evolution. Deep sequencing between rounds of evolution will allow parsing out and tracking of 

advantageous vs. deleterious vs. neutral hitchhiker mutations without the need for laborious and 

time-consuming experimental characterization of large numbers of mutants in between each 

round. Then, this information can be fed back into the computational design algorithm to 

construct the next-generation design. By reducing the time and labor involved in in vitro testing, 

while still functionally yielding the same information, deep sequencing combined with 

computational design should also enable more efficient, targeted scanning of the candidate 

sequence space.  
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Another interesting development in protein biochemistry that may be applied to improve 

computational design algorithms is the Ranganathan group’s investigation of putative protein 

“sectors,”  or co-evolving groups of amino acids that are contiguous in structural space but not 

necessarily sequence space, that can be correlated to specific protein phenotypes [32]. The 

thought is that statistically significant covariance between residues likely indicates that these 

residues are part of a physically connected network that plays a distinct functional role. Similar 

to how sequence similarity search engines use position-specific residue probabilities derived 

from multiple sequence alignments of known sequences, in the case of protein redesign, 

especially redesign of binding or enzymatic activity, it may be useful to perform statistical 

coupling analysis (SCA) to identify residues that co-vary across the target and proteins known to 

bind to that target. Co-variance between residues in this case would likely correspond to sites of 

physical interaction between the target and binder, and this information could be used to fix or 

constrain these residues as pseudo-anchors when designing the new sequence, with optimization 

focusing on surrounding residues that may improve the packing of the interface or stabilize long-

range electrostatic interactions.  

 

Finally, another way in which current design methodologies might be improved is the 

incorporation of explicit negative design. As the studies on the inactive Kemp eliminase showed, 

it is not necessarily sufficient to try to minimize the energy of the desired conformation. Rather, 

deliberate destabilization of alternate conformations that are energetically close to the target 

structure may be required to eliminate nonspecificity or competitive nonproductive interactions. 

In other cases, rather than negative design, multi-state optimization may be needed to design 

enzymes that catalyze reactions involving multiple transition states. While stabilization of a 

single transition state may be sufficient to allow enzymatic catalysis to proceed, optimizing the 

design to promote stabilization of multiple states may lead to computational designs with greater 

catalytic activity prior to directed evolution.  

 

The field of computational protein design has seen phenomenal advances in the mere 1-2 

decades since its birth. As design algorithms are further refined and computing power continues 

to increase, the number, functional activity, and structural fidelity of successful designs will 

likely increase as well. In the future, we can anticipate that increasingly intertwined in silico and 
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experimental approaches will enable deeper, more systematic probing into the fundamental 

biochemical principles driving processes such as protein folding and catalysis, while also 

allowing ever bolder forays into the awesome, vast protein space uninhabited by nature and 

undiscovered by science.  
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